Fundamental aspects of catalysis on supported metal clusters
نویسنده
چکیده
In this review, we examine the role of oxide support defects, cluster size-dependence, cluster structural fluxionality, and impurity doping on the catalytic properties of size-selected metal clusters on surfaces. By combining experimental results from the oxidation of CO on sizeselected gold clusters with ab-initio calculations, a detailed picture emerges of the electronic and structural dynamics of this process. For Au8, Au4, and Au3Sr clusters on F-center defects on MgO(100), optimized atomic structures and local density of states calculations support the experimental results for the oxidation of CO. Fundamental aspects such as charge transfer from oxide defect sites and the adsorption and activation of reactant molecules are elucidated. Using a pulsed molecular beam set up, turnover frequencies for the oxidation of CO and the reduction of NO on Pd clusters were determined. This new experimental scheme allows for the determination of mechanistic details of much greater sophistication than with one-cycle experiments. Isolating known catalytic phenomena such as spillover, reverse spillover, and adlineation should be attainable at the atomic level using these pulsed molecular beam experiments on size-selected metal clusters on surfaces.
منابع مشابه
Catalysis by Supported Gold Nanoclusters
The physical and chemical properties of supported Au clusters are markedly sensitive to cluster size and morphology. To investigate the origin of the unique properties of nanosized Au clusters, model catalysts consisting of Au clusters of varying sizes have been prepared on single crystal TiO2(110) and ultrathin films of single crystalline TiO2, SiO2, and Al2O3. The morphology, electronic struc...
متن کاملActivation Strategies for Enhancement the Catalytic Activity of Gold Nanocatalysts
Recent advances in nanoscience have led to the development of numerous methodologiesfor controlled synthesis of mono dispersed nanoparticles and/or nanoclusters via surface stabilization by organic capping ligands. The application of these nanoparticles in catalysis and other fields often requires the removal of organic ligands. It is known that the removal of organic capping agents or or...
متن کاملMolecular metal catalysts on supports: organometallic chemistry meets surface science.
Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, a...
متن کاملPalladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction
Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be ...
متن کاملA comparative study between transition-metal-substituted Keggin-type tungstosilicates supported on anatase leaf as catalyst for synthesis of symmetrical disulfides
Transition-metal-substituted (TMS) polyoxometalates of the general formula [SiW9M3O39], (where M = first row transition metal), has been synthesized and supported on anatase by sol–gel method under oil-bath condition. The tetrabutylammonium (TBA) salts of the Keggin-type polyoxotungstates [SiW9M3O39], (M = VII, CrII, MnII, FeII CoII and NiII), proved to be green, reusable, and ...
متن کامل